Fast - forward : the fourth dimension in development

نویسنده

  • Hugo van den Berg
چکیده

One of the key goals of modern cell and developmental biology is to expose the underlying principles that drive cell differentiation and to elucidate how organisms construct functional multicellular structures. Thanks to advances in sequencing, high throughput screens and sophisticated imaging technologies, these fields are now awash with quantitative descriptions of gene transcription, cell signaling and cell mechanics. However, extracting key principles from the flood of new data is a major challenge for researchers and a central obstacle to fundamental progress in cell and developmental biology. The tools required to interpret this vast amount of biological data and to test hypotheses based on these studies can be found in quantitative analysis and mathematical modeling. With the book Mathematical Models of Biological Systems, Hugo van den Berg aims to contribute to the training of a new generation of biologists and mathematicians and to provide them with an introduction to the methods that are now available to quantitatively analyze biological data. Like many quantitative biologists, my first exposure to mathematical modeling was not in the context of cell biology or developmental biology, but came through examples from physical chemistry, physiology and population ecology. In these fields, simple problems can be formulated using ordinary differential equations (ODEs) with complete statements of the state variables, such as initial conditions. As students, we learned to write ‘word-models’ and to translate these into sets of ODEs. Word models are narrative passages intended to translate the details of a biological problem such that biologists and mathematicians alike can understand the problem in a way that allows equations to be written which capture those details. For instance, we can distil the interactions between predators and prey by stating the rules that govern their populations. Rules that govern the population of prey might include sources of population growth, such as birth or migration, and losses to the population due to predation or disease. The precise statement of these rules should be complete enough to govern the mathematical formulation of the model. Given a well-defined word model, the mathematical biologist can then write a series of ODEs; for example, with variables that represent the number of predators and prey and equations to describe how populations of predators and prey change. As students, we sometimes discovered that there were closed form solutions of these ODEs, in which changes in variables can be predicted explicitly by equations. But more often we found that we could only evaluate the general dynamic behavior of the variables; for instance, whether populations of predators and prey are stable or not. The insights and training that these modelbuilding exercises gave us were instrumental in becoming fluent in the basic skills of mathematical modeling. The processes of formulating a model and relating fundamental principles to the mathematics and experimental outcomes were often more informative than the solution itself. However, after marveling at the awesome power of ODEs, we soon realized that the solution of some, or indeed most sets of, ODEs was intractable, that there was no way to capture relevant details of complex biology with continuous variables, or that model predictions could not be tested experimentally. As such, the tool kit of ODEs used to learn the skills of mathematical modeling is less useful for developing the quantitative models that are needed to describe problems in cell and developmental biology. Unlike physics or chemistry, biology has very few universal theories. In classical physics, theoretical frameworks can connect multiple experimental fields. By contrast, most models in mathematical biology are developed ad hoc to describe a single series of experiments. To think that a slim textbook could capture the entirety of mathematical biology, with all its ad hoc models, would be absurd, but this book provides a good introduction to it by presenting classical applications of ODEs. The first half of the book introduces the reader to the mathematical tool kit needed to formulate models and to solve or characterize their behavior. Most of the second half focuses on specific applications of modeling, with chapters on population growth (ecology), dynamics of disease in populations (epidemiology) and within the individual (immunology), and physiology. Many of the examples are similar to those found in classical texts, such as James Murray’s series on Mathematical Biology (Murray, 2007), Leah EdelsteinKeshet’s Mathematical Models in Biology (Edelstein-Keshet, 2005) or Lee Segel’s excellent Modeling Dynamic Phenomena in Molecular and Cellular Biology (Segel, 1984). Despite some organizational flaws, such as the placement of a chapter on the philosophy of mathematical modeling in the middle of the book, and the introduction of stochastic processes at the end of the book, developmental biologists may be interested in using van den Berg’s book to explore the basic principles of mathematical modeling;

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Liquid Architecture Ideology Based on Marcos Novak’s Theories

Marcos Novak mainly considers a type of architecture cuts loose from the expectations of logic, perspective, and laws of gravity, and has invented a set of conceptual tools for thinking about and constructing territories in cyberspace. Novak introduces the concept of "liquid architecture”, a fluid, imaginary landscape that exists only in the Digital domain. He views trans-architecture as an exp...

متن کامل

Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...

متن کامل

Position Control Improvement of Permanent Magnet Motor Using Model Predictive Control

Fast and accurate transient response is the main requirement in electric machine position control. Conventional cascade control structure has sluggish response due to the limitation of inner control loop bandwidth. In this paper, in order to decrease the Permanent Magnet Synchronous Motor (PMSM) transient response time it can be used reference model using feed-forward signals. In this structure...

متن کامل

Temporal Dimension Evaluation by Fuzzy TOPSIS Method

This paper evaluates and ranks the temporal dimensions, known as fourth dimension of urban design, of a number of places in a city by TOPSIS method. TOPSIS method is technique for order preference by similarity to ideal solution. TOPSIS is one of the renowned methods for classical multi-criteria decision-making (MCDM) problems that defines the positive ideal solution and negative ideal solution...

متن کامل

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

The Fourth Wave of Feminism and the Lack of Social Realism in Cyberspace

Recent years have witnessed a surge in research on the impact of the cyberspace on social movements. The feminist movement has built a vocal platform online which attempts to underscore sexual violence against women. Scholars have begun to suspect that the internet has ushered in a new wave, the fourth wave of feminism. The fourth wave’s main feature is its reliance on social media. The accessi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011